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1 Introduction

1.1 Modelling cords and spheroids

Blood vessels in vascularized tumours are in general irregular and chaotically
oriented. However, more ordered structures have been observed, mainly in
experimental tumours, where tumour cells proliferating around a blood ves-
sel give rise to approximately axisymmetric aggregates called tumour cords

[36, 29, 33]. Tumour cords generally differ from each other in size and ori-
entation and, depending on their stage of development and on the way they
are organized in space, may or may not be surrounded by a necrotic region.
In the presence of necrosis, the mean thickness of a cord is 60 − 130 µm in
different tumours, with mean radius of central vessels of 10− 40 µm. Figure 1
shows a schematic cross-section of a system of cords in the absence of necrosis
(panel A) or separated by a connected necrotic region (panel B). We have
assumed in this figure that blood vessels are parallel, identical and regularly
spaced, as in the Krogh model of microcirculation [32]. The assumption of a
Krogh-like vasculature allows us to formulate a highly idealized model of a
vascular tumour.

The main difficulty in the experimental study of tumour cords is that
they cannot be grown in vitro. This explains why much more attention, also
by mathematicians, has been devoted to the so-called multicellular tumour
spheroids, i.e. approximately spherical aggregates of tumour cells which can
be easily grown in vitro under well controlled conditions (see the review [34]
for the experimental issues, and [17, 3] for the mathematical modelling).

From the modelling point of view, the fact that cords receive nutrients
from the central blood vessel offers some advantages. For instance, the zone
of more intense proliferation can be identified as the innermost region, with
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Fig. 1. Scheme of an array of tumour cords. Panel A: vessels close enough to
provide nutrient supply to all surrounding cells. Panel B: the increased distance
among vessels causes peripheral necrosis. Symbols will be explained in section 2.

a progressive weakening of activity toward the periphery, possibly reaching
a region of complete necrosis. For avascular tumour nodules receiving nu-
trients from the surroundings the situation is obviously reversed, but there
is no general agreement on how deep in the tumour the cells proliferate. In
some models, proliferation is assumed to be allowed only for cells situated in
a thin peripheral rim, or even just at the surface of the tumour. This ques-
tion is particularly important when dealing with the geometrical instability
of the tumour (see [26]), that from a slightly perturbed spherical shape may
eventually produce finger-like structures. Besides [16], the formation of frac-
tal structures is described in [25] on the basis of a discrete model. We may
have an idea of how delicate is the issue of the surface proliferative activity
by observing that there are models that concentrate the whole activity on the
tumour surface, and assume opposite views about the relative importance of
the growth-favouring nutrient concentration and the growth-inhibiting pres-
sure (both higher in tips in a non-spherical shape). Compare for instance the
models in [1] and [16], both able to generate complicated shapes by means of
different mechanisms.

If we concentrate on modelling the evolution of just one cord in the interior
of a more or less regular cohort, the chosen element confines with other similar
elements. Thus we do not deal with the problem of how the active surface of a
tumour interacts with the surrounding tissue in the body. This subject, how-
ever, is receiving growing attention. For instance, it has been suggested that
as a byproduct of glucose metabolism an acidic environment can be created.
The corresponding pH level can be lethal to the adjacent normal tissue, while
tolerated by the tumour cells [35]. Another advantage in modelling cords is
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that the cell velocity is known at the inner boundary: cells adhering to the
central blood vessel have zero velocity. This information is of great help in
integrating the differential equation for the cell velocity (see section 2.2). On
the contrary, in spheroids carrying a necrotic core there is no point where the
velocity of live cells is known a priori, and information must be retrieved by
describing the dynamics of the necrotic core.

That said, there are also questions that turn out to be more complicated
in tumour cords than in spheroids. The most evident one is about the geom-
etry. While approximating the spheroid with a sphere is an obvious choice in
the framework of the continuum approach, attributing a circular cylindrical
shape to a cord is certainly questionable for the reasons already mentioned.
Moreover, the concentration of nutrients and the blood pressure change along
the cord and restrictions on their relative variations must be imposed. We will
briefly discuss this point in section 2.3. The reward of cylindrical symmetry is
however remarkable, because this assumption allows to bypass the mechanical
problem of the cell-cell and cell-liquid interactions (if we confine ourselves to
these two constituents) that determine the cell motion.

A disadvantage of the cylindrical vs. the spherical geometry is the higher
dimensionality of the dynamics of extracellular fluid, which permeates the
whole tumour. The role of the fluid is essential, because it provides the ma-
terial for the growth of dividing cells. In a sphere we may suppose that the
fluid velocity, as well as the cell velocity, is purely radial (we obviously refer
to average quantities). In cylindrical tumour cords, it is still reasonable to
take a radial velocity field for the cells in a stage in which expansion in the
direction of the blood vessel has been completed. On the contrary, the fluid,
which comes from the central blood vessel and crosses the whole cord, must
eventually leave the cylinder formed by the cord and the peripheral necrosis
from the two bases, thus acquiring a velocity with a longitudinal component.

Another difficulty, which is present in modelling tumour cords and is com-
mon to modelling of all vascular tumours, is the possibility that internal
stresses grow so large to produce the collapse of blood vessels, cutting out
nutrients supply. Predicting this event obviously requires the computation of
the stress at the blood vessel wall. Studies in this direction have been per-
formed in [15, 2] on the basis of suitable constitutive laws for the mechanical
behaviour of the tumour. So far such an analysis has not been performed for
tumour cords. Not including the stresses in the model is a strong limitation,
not only concerning the blood vessel collapse, but also for the inhibitory action
that compression may have on cell proliferation. Such effect has been consid-
ered by some authors [18, 20], mainly in the context of models that consider
cells and extracellular liquid as two interacting fluids. Radial compression,
however, could also be the cumulative result of the traction exerted on the
expanding cell layers. We believe that this aspect should receive adequate
attention in the future.

Despite all differences between spheroids and tumour cords, they share
many features and what is obtained in one context should not be ignored in
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the other. One of the most interesting aspects that have been emphasized
in modelling tumour cords is that their evolution is constantly accompanied
by the presence of unilateral constraints, as it will be illustrated later. These
constraints should be accounted for also in the evolution of the live cells-
necrosis interface in spheroids subjected to treatment.

One more - and last - general remark about modelling of tumour cords,
applicable also to spheroids, is about the justification of adopting the con-
tinuum approach. This choice may look rather questionable, since a typical
cord thickness is of the order of 4–7 cellular diameters (as in many cases is
the viable rim in spheroids), thus pointing in favour of a discrete approach.
One should not forget, however, that the typical length of a cord is about
30 cellular diameters, so that the number of cells in a cord is of the order of
103. We may take advantage of this fact by selecting the so-called representa-
tive elementary volume in the form of a thin cylindrical shell, which despite
its small thickness, intersects a sufficiently large number of cells. Thus, ba-
sic quantities such as the local volume fraction occupied by cells, acquire a
physical relevance.

1.2 Modelling treatments

Coming to treatments, we enter a huge subject because there are many dif-
ferent techniques, each presenting peculiar difficulties for mathematical mod-
elling. The ultimate target of the models should be the optimization of the
treatment. Let us briefly introduce some of them, restricting to treatments
whose effects can be more directly investigated by means of tumour cord
modelling.

Chemotherapy. A mathematical model should keep into account the way
the drug is transported within the tumour and delivered to the cells, the way
the drug is taken up and possibly released after cell death, and the modal-
ity of the cytotoxic action exerted. Relatively small molecules are mainly
transported by diffusion, while advection by extracellular liquid may have an
important role for molecules of larger molecular weight. Also, the interaction
with cell membrane may decide whether the drug permeates the whole tumour
volume or is selectively concentrated in the extracellular liquid. In vascular
tumours, the intricacy of the vessel network may be an obstacle to the drug
delivery because of the inefficient blood flow [31].

Radiation. The short duration of the delivery of a single radiation dose
is usually translated into the model by updating the initial conditions. The
difficulty here consists in describing the kinds of damage suffered by the cells,
taking into account their damage repair ability, and phenomena, such as re-
oxygenation, that influence the cell population radiosensitivity. Optimizing
the intensity and frequency of radiation doses is obviously of great impor-
tance, trying not only to maximize the effect on the tumour, but at the same
time to keep the damage to the normal tissues at an acceptable level. Models
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have been proposed for the spatially homogeneous case and only very recently
for tumour cords.

Antibodies. Antibodies target specific receptors on the tumour cells. They
can be charged with toxins or radio-nuclides. Advection may be important in
their transport. We will return to this subject later in the paper.

Viruses. Specific viruses able to infect tumour cells, replicate inside them
and cause cell lysis, are deployed in the tumour. Some mathematical models
have been proposed [40, 27]. Other therapeutic applications under study use
viruses as vectors for gene therapy. Due to the size of viruses, diffusion looks
negligible but even advection is scarcely efficient, so that transmission takes
place mainly by direct infection of neighbouring cells.

In this chapter we shortly review the model for the evolution of tumour
cords developed in [7, 8, 9, 10], as well as the attempts of modelling the
response to drugs and radiation, and the transport of antibodies able to bind
to tumour cell surface antigens [11, 12, 13].

2 The basic model for the evolution of tumour cords

A first model of tumour cords was proposed in [5], including the age struc-
ture of the cell population, and mathematical aspects of this approach were
investigated in [39, 23]. This model was sketched in the review paper [24].
Age structure is essential in many cases, e.g. when studying the distribution
of a proliferation marker taken up at a specific phase of the cell cycle [6], but
for other purposes age effects can be averaged out. The model described in
the following does not include age structure, whereas it includes the diffusion
and consumption of the nutrient, the flow of interstitial fluid, and predicts the
evolution caused by treatments.

2.1 Structure of the cord. Cell and fluid dynamics.

Figure 2 depicts the idealized geometry of a tumour cord surrounded by necro-
sis. Let r0 denote the blood vessel radius and ρN denote the cord radius. In
the domain r0 <r <ρN , the cell population may be subdivided into prolifer-
ating (P), quiescent (Q), and apoptotic cells, all surrounded by extracellular
liquid. Such constituents are supposed to have the same mass density, and
the corresponding local volume fractions νP , νQ, νA, νE add up to one. The
surface r = ρN is the interface with the necrotic region, ρN < r < B. Assum-
ing the cord to be inside an array of parallel and regularly spaced cords, the
outer boundary B prevents any mass exchange with the neighbouring cords.
Although we will mainly deal with the case of cords surrounded by necrosis,
we may also consider the case in which the necrotic region is absent (Fig. 1A).
In such a case, B is the cord radius. The longitudinal coordinate z varies in
the interval [−H, +H ]. The liquid, which enters the system at r = r0, leaves
from the bases z=±H .
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Fig. 2. Geometry of the tumour cord (symbols explained in the text).

We assume that cells form a porous medium of constant porosity (that is,
νE is constant) and, irrespectively of their state, they move with the radial
velocity u = (u(r, t), 0). The porosity is thus independent of the stress the
cells are experiencing (we also will neglect the possible influence of the stress
on the proliferation rate). The assumption that the cord can always be viewed
as a packed arrangement of cells, possibly including dead and already degrad-
ing cells, limits the applicability of the model to cases in which the cellular
component maintains some adhesion and is not severely reduced as a conse-
quence of treatment. Therefore, the model could be significantly improved by
including the computation of the stress and the possible degradation of the
structure.

The velocity v of the fluid relative to the cells in the live cord is given by
Darcy’s law

νE(v − u) = −κ∇p̃ , (1)

where κ is the hydraulic conductivity and p̃ is the pressure of the liquid. Deal-
ing with (1) in our case is not simple, in view of the fact that the dynamics of
the fluid in the cord is coupled with the dynamics of the fluid in the necrotic
region. The rigorous way to proceed would be to take the divergence of both
sides in (1) and use the information on ∇·v, ∇·u derived from mass balance,
thus obtaining an elliptic equation for p̃ to be associated with complicated in-
terface conditions. We choose instead an approximate description that retains
however the most relevant information, that is the total fluid flow across each
cylindrical section. This procedure amounts to considering the longitudinal
average of the radial component of v. Performing the longitudinal average of
∇ · v, where v=(vr, vz), and setting

v(r, t) =
1

2H

∫ H

−H

vr(r, z, t) dz ,

one gets
1

r

∂

∂r
(rv) +

1

2H
[vz(r, H, t) − vz(r,−H, t)] .

The second term expresses the outflow rate from z = ±H , which has to be
specified in some way. Our choice is to introduce the longitudinal average of
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the pressure,

p(r, t) =
1

2H

∫ H

−H

p̃(r, z, t) dz ,

and to assume that the outflow rate is proportional to the difference p−p∞.
The constant p∞ is identifiable as a ”far field” pressure, namely the pressure
in the lymphatic vessels. Thus the quantities utilized in our model are v(r, t),
p(r, t). We remark that the difficulties we have emphasized are peculiar to
the cord geometry. The averaging procedure is not required in the case of a
spheroid.

2.2 Mass balance and oxygen dynamics

We are now ready to write down the mass balance equations for the various
cell subpopulations

∂νP

∂t
+

1

r

∂

∂r
(ruνP ) = χνP + γνQ − λνP − µP νP , (2)

∂νQ

∂t
+

1

r

∂

∂r
(ruνQ) = −γνQ + λνP − µQνQ , (3)

∂νA

∂t
+

1

r

∂

∂r
(ruνA) = µP νP + µQνQ − µAνA , (4)

and for the liquid
νE∇ · v = µAνA − χνP . (5)

In the above equations, χ is the proliferation rate, γ and λ are the rates of
the transition Q→P and, respectively, P→Q, µP and µQ are death rates, µA

is the volume loss rate of dead cells. The coefficients γ and λ are increasing
and, respectively, decreasing functions of the oxygen concentration σ(r, t); the
coefficients µP , µQ rather than spontaneous death represent the action of a
cytotoxic agent, or can be associated to the damage produced by radiations.
Thus, the knowledge of µP , µQ relies on the determination of other quantities,
whose evolution should also be modelled.

Summing (2)-(4) (remember that νP +νQ+νA = ν⋆ is constant), produces
a simple differential equation for u:

1

r

∂

∂r
(ru) =

1

ν⋆
(χνP − µAνA) .

Adding also (5), we get

∇ · (νEv + (1 − νE)u) = 0 , (6)

that expresses global incompressibility. Taking the longitudinal average of (6)
as we have described above, we find

1

r

∂

∂r
(rv) = −

1

νE

(

χνP −µAνA +
ζout

H
(p − p∞)

)

,
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where the coefficient ζout, possibly dependent on r, measures the drainage
efficiency from the cord ends. Going back to Darcy’s law (1), we can now
derive its averaged form as

νE(v − u) = −κ
∂p

∂r
,

which in our scheme is used to obtain the pressure:

p(r, t) = p0(t) −
νE

κ

∫ r

r
0

[v(r′, t) − u(r′, t)] dr′ , (7)

where the new unknown p0(t)= limr→r+

0

p(r, t) appears.

We consider the oxygen as the critical ”nutrient”, although other sub-
stances are important for cell energy metabolism, see for instance [19] and
the recent paper [38] where oxygen, glucose and lactate concur in determin-
ing the level of ATP in the cell. The high permeability of cell membrane to
oxygen allows to disregard the difference between extracellular and intracel-
lular concentration. Due to the high diffusivity of oxygen, the quasi-steady
diffusion-consumption equation

∆σ = fP (σ)νP + fQ(σ)νQ (8)

is assumed to be valid, where the functions fP , fQ that are related to oxygen
consumption are of Michaelis-Menten type. We assume that all cells die if σ
falls to a threshold value σN .

Before modelling the necrotic region, let us write down the boundary con-
ditions for the equations written so far.

2.3 Boundary and initial conditions

As we said, at the vessel wall we may impose

u(r0, t) = 0 .

This condition guarantees that r = r0 is a characteristic for (2)-(4), so that
the quantities νP , νQ, νA do not have to be prescribed there.

Concerning the oxygen, we have:

σ(r0, t) = σb ,

where σb is the oxygen concentration in blood, taken constant.
For the liquid exchange between blood and tumour tissue, a simple condi-

tion is the following:

νEv(r0, t) = ζin(pb − p0(t)) ,
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where pb is the (constant) blood pressure, p0 is the unknown introduced in (7),
and ζin a coefficient expressing the exchange efficiency. We recall here that
the assumption that σb and pb are both constant is an approximation because
of the occurrence of two competing phenomena. Since oxygen is continuously
transferred to the cord, its concentration in blood tends to decrease along the
vessel in the direction of blood flow. In order to make the concentration as
uniform as possible it is necessary that blood flow is sufficiently rapid, which
however requires a high pressure drop. The vessel radius and the size of the
cord are crucial in determining whether or not a compromise can be reached.
On the basis of perfusion data, it has been checked that for cords of average
size the two assumptions may be accepted [9].

Considering the interface r=ρN , a first condition is the continuity of the
averaged pressure:

p(ρN , t) = pN(t) ,

where pN is unknown.
The most delicate conditions are concerned with the oxygen dynamics,

because here we find two possible regimens:

(s1) cells enter the necrotic region, that is

u(ρN(t), t) > ρ̇N (t) , (9)

which means that σ has reached the necrosis threshold:

σ(ρN (t), t) = σN ; (10)

(s2) cells do not enter the necrotic region, that is

u(ρN(t), t) = ρ̇N (t) , (11)

while σ is free to rise above σN :

σ(ρN (t), t) ≥ σN . (12)

In both cases, according to the quasi-steady diffusion assumption, we impose

∂σ

∂r

∣

∣

∣

∣

r=ρ
N

(t)

= 0 .

Thus the motion of the interface takes place under two unilateral constraints.
Note that (10) actually defines ρN(t). Typically the switch from (9)-(10) to
(11)-(12) occurs when cells are killed by a treatment, that reduces oxygen
consumption and pushes the interface outwards. The interface velocity can-
not however exceed the cell velocity, since no living cell can be produced from
the necrotic material. The converse switch is instead typical of the tumour
regrowth, which, under the conditions (11)-(12) would tend to force σ be-
low σN . Simulations performed in [7] show clearly the essential role of these
constraints in the evolution of the cord.
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In the absence of necrosis, we have to prescribe for σ the no-flux conditions
at r = B(t). This boundary is now a material surface, and we have Ḃ =
u(B(t), t). Concerning the pressure p, we cannot assign its value at r = B.
Instead we will have there ∂p/∂r

∣

∣

r=B(t)
= 0.

Prescribing initial conditions is not as simple as it may look like. For
instance, when one wants to investigate the effects of treatments it makes
sense in many cases to start from the steady state (the steady state problem
includes the equations for the necrotic region, still to be written). Finding the
equilibrium solution is itself a highly nontrivial problem. All such issues have
been discussed in detail [8, 9].

2.4 The necrotic region

We recall that the necrotic region occupies the domain ρN (t) < r < B(t),
−H < z < H . The way the forces exerted at r = B enter the evolution of
the system depends on the composition of the necrotic region, that contains
a fraction of solid material (dead cells retaining some structural integrity)
and a fraction of liquid. We have two possible regimens: (n1) the solid is
packed in a sufficiently dense way so to withstand the external action; (n2)
the surrounding medium acts directly on the liquid. We take the simplifying
assumption that both the pressure and the local volume fraction of dead cells
are space independent.

The total volume of the necrotic region is

VN =2Hπ(B2−ρ2
N) (13)

and it splits into the sum V c
N +V l

N of the solid and of the liquid volume. The
evolution of the latter quantities, disregarding the loss of dead cells through
z=±H , is ruled by mass balance:

V̇ c
N = 4HπρN(1 − νE)[u(ρN , t) − ρ̇N ] − µNV c

N , (14)

V̇ l
N = 4HπρNνE [v(ρN , t) − ρ̇N ] + µNV c

N − qout(t) , (15)

where µN is the rate of conversion of solid to liquid (remember also that
u − ˙ρN ≥ 0 which implies V c

N > 0), and qout is proportional to the difference
(pN − p∞) and to the area of the cross-section π(B2 − ρ2

N ), with the weight
V l

N/VN i.e. the liquid volume fraction. Thus

qout = 2ζN
out

V l
N

VN

π(B2 − ρ2
N )(pN − p∞) , (16)

where the coefficient ζN
out is comparable to ζout/νE .

The complement to one of V l
N/VN , that is V c

N/VN , is subject to the con-
straint

V c
N

VN

≤ ν⋆
N , (17)
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with the equality corresponding to regime (n1). Thus, in regime (n1), imposing
V̇ c

N =ν⋆
N

˙VN in (14) yields a differential equation for B2:

d

dt
(B2 − ρ2

N ) = 2
1 − νE

ν⋆
N

ρN

(

u(ρN , t) − ρ̇N

)

− µN (B2 − ρ2
N) . (18)

By setting V̇ l
N = (1 − ν⋆

N )V̇N and V c
N = ν⋆

NVN in (15) gives an expression for
qout, which defines pN via (16).

So far we have ignored the stress, but during regime (n1) pN is required
not to exceed the stress that the surrounding material is able to exert on the
system. Such a stress may be considered a function of the overall size of the
cohort of cords, that is, a function of B. Let Ψ(B) denote such a function,
increasing with B. Thus, the following constraint has to be satisfied during
regime (n1):

pN <Ψ(B) . (19)

Violating the constraint (19) marks the transition to regime (n2), in which
the condition V c

N =ν⋆
NVN is replaced by the condition

pN =Ψ(B) , (20)

and (17) as a strict inequality is present as a new constraint. Now (14) can be
integrated, providing V c

N as a functional of ρN and u, while the combination
of (13), (15), (16), (20) leads to the differential equation for B replacing (18).
This picture of the necrotic region is the one proposed in [10].

In the formation of a spheroidal tumour the early stage of the necrotic
core will be under the regime (n1). The same is true for the first appearance
of a necrotic zone around the cord. However, predicting in a more precise way
the transition to the other regime would require a definition of the age of the
outer rim of the necrotic region around the viable core (or of the inner core in
the case of the spheroid), abandoning the simple model of the homogeneous
mixture.

We conclude this section by recalling that the well-posedness of the model
was investigated in [8, 9], including the analysis of the steady state in the
case of untreated tumour. Useless to say, the presence of constraints in the
dynamical case produces serious mathematical difficulties.

3 Response of cords to treatments

The model illustrated in the previous section has been applied to study the
response of cords to various types of treatment. Here we comment the work
done in this direction. Although the results give several interesting clues on
the effects of treatments, we must say that they are far from being conclusive.
One of the reasons is that the model used, despite the many details it contains,
does not give a full description of the tumour.
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3.1 Treatments by drugs

Already in [7], where the model was first presented in a version not including
the dynamics of the fluid, the effect of a cytotoxic drug was considered. That
model was only applicable to drugs whose transport mechanism is mainly dif-
fusive. We estimated that advective transport is indeed negligible if diffusivity
is not less than 5×10−8 cm2/s, a condition satisfied by many anticancer drugs.
Moreover the drug was supposed to diffuse the same way in the liquid and
in the cells. The cell death rate was taken as a given function of the drug
concentration c. Of course the diffusion equation for c contains a sink term,
expressing drug uptake and consumption by the cells, which vanishes in the
necrotic region. The value of c was prescribed at the blood vessel wall as a
function of time, following drug administration, while zero flux was prescribed
at the boundary r = B(t).

The effect of cell killing on the evolution of the cord, including the dis-
tribution of pressure and the change experienced by the necrotic zone, was
investigated (in the context of the full model illustrated in section 2) in [10].
However, instead of examining the dynamics of the drug, the death rates µP ,
µQ were chosen as a combination of space independent functions decaying
exponentially with time, so to reproduce the expected effect of the delivery of
a bolus dose. Namely, we chose [10, 11]:

µP (t) =
mP

τ1 − τ2

(e−t/τ1 − e−t/τ2) ,

µQ(t) =
mQ

τ1 − τ2

(e−t/τ1 − e−t/τ2) ,

where τ1 is related to drug removal and τ2 to the drug distribution in the
body compartments.

This shortcut made the simulation simpler, and allowed us to reach some
significant qualitative conclusion. For instance it was pointed out that cell
killing alone is not enough to produce a marked reduction of the overall size
of the tumour, but it must be accompanied by an effective drainage of the
liquid (meaning a sufficiently high value of the coefficients ζout, ζN

out of the
model). Figure 3 shows an example of the time evolution of the cord in the
case of a cycle-specific drug, that is, a drug affecting mainly the proliferating
cells (mP > mQ). Panel A reports the ratio between the total volume (per unit
cord length) of viable cells and its value at t=0, describing the dynamics of the
viable cell population following the treatment. The reduction of the number
of viable cells lowers oxygen consumption and thus causes reoxygenation of
the cord as shown by the time course of mean oxygen concentration (panel
B). The increase in oxygen concentration induces a recruitment of quiescent
cells into proliferation, as seen in panel A, so that a transient phase in which
the proliferating fraction is higher than the initial one may occur. The radius
ρN shows an initial shrinkage followed by a regrowth leading to the steady
state (panel C). Very soon after the rise of drug concentration the interface
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Fig. 3. Panel A: time course of the viable cell subpopulations after a single-dose
treatment; P proliferating cells, Q quiescent cells. Panel B: mean oxygen concentra-
tion. Panel C: cord radius ρN and outer boundary B. Panel D: pressure and cell
fraction in the necrotic region. Parameters as in [24] with mP /mQ =5.

r = ρN becomes a material surface (see section 2.3). The slope discontinuity
that occurs later marks the switching of the interface from the material to
the nonmaterial nature. In the same panel, the time course of the boundary
B is plotted. Panel D shows the time evolution of the pressure pN and of the
cellular fraction in the necrotic region. In the initial state the constraint (17) is
satisfied with the equality sign and the pressure is less than Ψ(B). Due to the
enhanced influx of liquid caused by cell death, pN increases reaching Ψ(B). At
this point the regime changes, pN is given by Ψ(B) and the cellular fraction
goes below ν⋆

N . During the cord regrowth, the influx of liquid decreases and
the system switches again to the regime characterized by a cellular fraction
equal to ν⋆

N . It was found that the time evolution of the average interstitial
pressure in the viable cord closely follows the pressure in the necrotic region
because of the high value of Darcy’s conductivity.



14 A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli

This numerical experiment opened the way to the mathematical investi-
gation of another question of great interest: what is the effect of splitting a
dose of drug? We have considered the case of splitting the dose into two equal
boluses spaced by a time interval T , and found the splitting advantageous if
the sensitivity of the cell population to the drug significantly increases when
the oxygen level increases [11]. Comparison between the single dose and the
split dose was made by using the survival ratio defined as:

SR =
min(viable cell volume)2
min(viable cell volume)1

, (21)

where the subscripts 1,2 refer to the single and to the split dose, respectively.
A crucial role is played by the ratio mP /mQ. To understand how dose

splitting can enhance the cell killing, one should go back to equations (2)-(3),
in which the coefficients γ, λ regulating the transitions P ⇄ Q are monotoni-
cally dependent (in opposite ways) on the oxygen concentration σ. As shown
by Fig. 3B, when the first half-dose kills a certain fraction of cells, oxygen
concentration increases favouring the transition of the surviving Q-cells to
the P-state. Then, if the ratio mP /mQ is large, the “upgraded” cells will have
a much greater chance to be killed by the application of the second half-dose.
This phenomenon is called resensitization. Figure 4, left panel, shows the be-
haviour of SR as a function of the inter-fraction interval, when using different
values for mP , mQ. Of course, taking mP /mQ = 1 eliminates resensitization
completely, while a ratio mP /mQ =5 shows a marked effect of the dose split-
ting procedure. The figure also shows the existence of an optimal choice of the
splitting time, corresponding to the time in which the ratio between P and
Q cells is maximal. These results are obviously qualitative, but they strongly
suggest to promote experimental research in this direction.

Dose splitting is an interesting topic also in the context of radiation therapy
[14], as we will see in the following section.

3.2 Response to impulsive irradiation

A spatially uniform model

Radiations can produce cell damages which may later lead to cell death either
by a direct action or as a consequence of a misrepair process. In order to un-
derstand and to model the latter mechanism, suppose that the DNA double
strand is broken by radiation at one point. This damage has a certain proba-
bility of being repaired, thus allowing the cell to survive. However, along with
the repair consisting in joining the two segments of the same DNA molecule,
there can also be “cross-repairs” in which two segments originally belonging
to different strands are joined, giving rise to two misrepaired strands. The
outcome of such mixing may, or may not, be lethal for the cell. Each DNA
double strand has a specific point, known as its centromere, acting as a pivotal
center during mitosis. Now, the “cross-repair” can produce two chromosomes
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Left panel: SR for split-dose drug delivery. Closed symbols: mP /mQ = 5; mP = 4
for each fraction (squares), mP =8 (triangles). Open symbols: mP /mQ =1; mP =2
(squares), mP = 4 (triangles). Other parameter values given in [11]. Right panel:
SR for split-dose radiation delivery. Effect of the intervessel distance on the survival
ratio. Closed squares, B(0) = 80 µm; open circles, B(0) = 90 µm; open squares,
B(0) = 100 µm; stars, cord surrounded by necrosis (ρN = 124.75 µm). Other param-
eter values given in [13].

with one centromere each, or one with two centromeres and one with no cen-
tromere. The occurrence of the latter kind of misrepair produces cells unable
to replicate and destined to death. Lethally damaged cells are called “clono-
genically dead”. Other types of lethal misrepairs can be accounted for in the
direct action.

A simple spatially-homogeneous differential model describing the repair-
misrepair process was proposed in [22, 30] and can be written as

dN

dt
= −[αḊ +

1

2
kU2]N , (22)

dU

dt
= δḊ − ωU − 2kU2 , (23)

where N is the number of viable cells, Ḋ the radiation dose rate, U the
mean number of DNA double strand breaks per cell (DSB). The term ωU
represents the rate of correct repairs, the term kU2 is the rate of binary cross-
repairs, which on one hand eliminate two DSBs each, and on the other have
a probability 1/2 of ending up with a lethal damage. Direct lethal action of
radiation is represented by the term −αḊ, whereas δḊ is the rate of DSB
production per cell. Cells carrying DSBs are counted in N as long as they do
not become lethally damaged.

The duration of pulse irradiation is usually so short that the direct action
of radiation and the DSB production can be described simply by setting the
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initial conditions for N and for U :

N(0+) = N(0−) e−αD

U(0+) = U(0−) + δD , U(0−) = 0 ,

where D is the radiation dose. The solution of (22)-(23) with the above
initial conditions provides, in the limit t → ∞, the surviving fraction
S =N(∞)/N(0−):

lnS = −αD +
ω

8k

[

ln
(

1 +
2kδD

ω

)

−
2kδD

ω

]

.

For 2kδD/ω≪1, which corresponds to neglecting the quadratic term in (23),
we obtain

S = exp
[

− αD −
k(δD)2

4ω

]

. (24)

Defining β = kδ2/(4ω), we recognize in (24) the so-called linear-quadratic
(LQ) model previously proposed on empirical bases [37].

When the dose D is split into two fractions D/2, given with an interval T ,
(22)-(23) still allow to evaluate the surviving fraction (after the second dose).
For simplicity we just report the new value of S in the case kδD/ω≪1:

Ssplit = exp
[

− αD − β
1 + e−ωT

2
D2

]

. (25)

Clearly
Ssplit

S
= exp

[

β
1 − e−ωT

2
D2

]

> 1 , (26)

showing that, according to this theory, splitting the dose is never advantageous
in terms of cell killing. We can also see that by splitting D into hD and
(1−h)D, the factor (1+e−ωT )/2 in (25) is replaced with 2h(h−1)(1−e−ωT )+1,
showing that the above ratio is maximum for h=1/2.

However, the analysis sketched above ignores the dynamics of the tumour
and, in particular, the possible reoxygenation of the tumour following the first
dose as experimentally observed [21]. It must be stressed that the parameters
α, δ are increasing functions of the oxygen concentration [41].

Effects of radiation on a tumour cord

In [13] we studied the dose splitting effect on the basis of the following tumour
cord model:

∂νP

∂t
+

1

r

∂

∂r
(ruνP ) = χνP + γνQ − λνP − mP (r, t)νP , (27)

∂νQ

∂t
+

1

r

∂

∂r
(ruνQ) = −γνQ + λνP − mQ(r, t)νQ , (28)

∂ν†

∂t
+

1

r

∂

∂r
(ruν†) = mP (r, t)νP + mQ(r, t)νQ − µν† , (29)

∂νA

∂t
+

1

r

∂

∂r
(ruνA) = µν† − µAνA , (30)
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where νP , νQ, and νA have the same meaning as in the basic model of section 2,

and ν† is the volume fraction of lethally damaged cells. The rates mP and
mQ represent the effect of the misrepair process that induces lethal damage,
µ is the death rate of lethally damaged cells.

In view of (22)-(23) for the kinetics of DSB repair/misrepair, for the rates
mP and mQ we assume

mP (r, t) =
1

2
kX2

P (r, t) , mQ(r, t) =
1

2
kX2

Q(r, t) , (31)

where XP (r, t) and XQ(r, t) denote the mean number of DSBs in an “equiva-
lent” P cell and, respectively, Q cell at the position r at time t. These quan-
tities, as derived in [13], satisfy the following equations:

∂XP

∂t
+ u

∂XP

∂r
= −ωXP − 2kX2

P , (32)

∂XQ

∂t
+ u

∂XQ

∂r
= −ωXQ − 2kX2

Q . (33)

The assumption that all cellular volume fractions in (27)-(30) sum up to
a constant ν⋆ yields the equation for the common cellular velocity u, as seen
in section 2. The dynamics of the interstitial liquid is here of less importance
and is disregarded.

If a sequence of impulsive irradiations is given with dose Dk at time tk,
k = 1, 2, . . ., t1 =0, we have the following conditions:

νi(r, t
+
k ) = νi(r, t

−
k ) exp[−αi(σ(r, t−k ))Dk] , i = P, Q ,

ν†(r, t+k ) = ν†(r, t−k ) +
∑

i=P,Q

(

νi(r, t
−
k ) − νi(r, t

+
k )

)

,

Xi(r, t
+
k ) = Xi(r, t

−
k ) + δi(σ(r, t−k ))Dk , i = P, Q ,

that define the initial data for the differential system (27)-(33) by setting
νi(r, 0

−) = νi0(r), ν†(r, 0−) = 0, Xi(r, 0
−) = 0, i = P, Q, and the data update

at the subsequent delivery times. We have allowed the sensitivity parame-
ters αi, δi to depend on the oxygen concentration according to experimental
evidence [41]. Oxygen concentration satisfies the free boundary problem de-
scribed in section 2, in which in (8) the absorption term due to the population
ν† must be added.

The model was simulated [13] under different conditions to elucidate the
influence of reoxygenation on the split-dose response compared with the re-
sponse to the undivided dose. Figure 4, right panel, shows the pattern of the
survival ratio defined by (21) for three different values of the radius B at t= 0
in the absence of necrosis (i.e., for different intervessel distances, see Fig. 1A).
In addition, the response of a cord surrounded by necrosis is also shown. When
B increases, the whole SR curve is lowered and reaches a minimum in the case
of necrosis. This is explained by considering that the mean oxygen concen-
tration decreases as B increases and therefore the average β value decreases.
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Smaller β values, according to the LQ model, are expected to produce smaller
SR values (see (26)). Moreover, if the cord radius is small, the reoxygenation
induces only a small increase in radiosensitivity because the initial mean oxy-
gen concentration is high, with σ falling in the saturating portion of the α(σ)
and δ(σ) curves. At the higher values of B, the SR curve shows an appre-
ciable relative minimum due to the reoxygenation of the cell population that
makes the second dose more effective. The initial rising branch of the curve
corresponds to the repair process, whose duration is proportional to 1/ω. The
increase for large T is due to the regrowth of surviving cells between the two
doses.

On the basis of the results shown in Fig. 4, we can conclude that the en-
hancing effect of reoxygenation on cell killing, which was emphasized for drug
treatments, is present here too, although it is not strong enough to reduce the
survival ratio below the unity. This apparently negative situation can however
prove advantageous since the increase of the survival ratio upon splitting may
be higher for the normal tissue than for the tumour [13]. Therefore repeated
treatments with fractionated doses may lead to a more selective destruction
of the tumour mass.

3.3 Transport of monoclonal antibodies

Specific antibodies may bind to antigens on the tumour cell membrane. This
property can be exploited to deliver a killing agent to the targeted cell (a toxin
or a radionuclide [4]). In some cases antibodies can directly exert a cytotoxic
action. As a preliminary analysis to the study of tumour therapies based on
the use of antibodies, in the paper [12] we have examined the problem of their
transport through a cord that has reached a steady state, without considering
any cytotoxic action. The scheme that follows may be the basis for a further
study.

We consider monoclonal IgG antibodies with two equivalent binding sites.
The antigens are uniformly distributed on the cell membrane and are mono-
valent. Thus the antibodies can be found in three states: (i) free in the ex-
tracellular liquid with concentration c, (ii) monovalently bound with surface

concentration b̂1, (iii) bivalently bound with surface concentration b̂2. All con-
centrations are supposed to be independent of the longitudinal coordinate z.
We schematize antigens as receptors with surface concentration Ŝ, and we de-
note by η⋆ the ratio of total cellular surface per unit volume to extracellular
volume fraction. Consistent with the assumption that the volume fraction oc-
cupied by cells in the cord is constant, η⋆ is a known constant. The formation
of bonds is a reversible process, and the formation of double bonds is taken
as a sequential process. We introduce the following rate constants: 2ka for the
formation of the first bond, k′

a for the formation of the second bond, and kd

for the dissociation of a bond.
That said, after performing the longitudinal mean, the dynamics of the

antibodies in the cord is described by the following system [12]:
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∂c

∂t
−

D

r

∂

∂r
(r

∂c

∂r
) + fv(r)

∂c

∂r
= fχ

νP (r)

1 − ν⋆
c − 2kaη⋆cŝ + kdη

⋆b̂1 , (34)

∂b̂1

∂t
+ u(r)

∂b̂1

∂r
= −χ

νP (r)

ν⋆
b̂1 + 2kacŝ − kdb̂1 − k′

aŝb̂1 + 2kdb̂2 , (35)

∂b̂2

∂t
+ u(r)

∂b̂2

∂r
= −χ

νP (r)

ν⋆
b̂2 + k′

aŝb̂1 − 2kdb̂2 , (36)

with
ŝ = Ŝ − b̂1 − 2b̂2 .

Here, u, v, and νP are functions of the radial distance only because the cord
is at the steady state. The velocities u, v and the size of the cord are provided
by the solution of the steady state version of the model in section 2 (with
µP =µQ =0, νA =0). In equation (34) we have considered that the transport
of antibodies takes place through diffusion (with diffusivity D) and advection
(with retardation factor f < 1).

For the flux of antibodies at the blood vessel wall, once the concentration
of antibodies in blood cb(t) is prescribed, we assume the expression

−D
∂c

∂r

∣

∣

∣

∣

r=r
0

+fv(r0)c(r0, t) =
P

νE

(cb(t) − c(r0, t))
Pe

ePe−1
+ v(r0)(1 − σf )cb(t) ,

with Pe (Peclet number) given by Pe = νEv(r0)(1 − σf )/P , where P is the
permeability of the vessel wall, and σf is the filtration reflection coefficient.

No condition is required for b̂1, b̂2 at r = r0, since u(r0) = 0. At t = 0 all the
unknown concentrations are taken to be zero. The second boundary condition
for c requires the description of the antibody transport in the necrotic region.

In the necrotic region, little is known about the interaction of antibodies
with degrading cells. Here we suppose that the antigens are retained on the
surface of dead cells and are destroyed after cell degradation. Concerning the
antibodies bound to cells entering the necrotic region, we suppose that upon
cell degradation either (i) antibodies are lost, or (ii) antibodies are set free.
Of course these are opposite options describing two extreme situations. They
are supposed to provide bounds to the real behaviour which will be somehow
in between. Whatever model is chosen, we have to write down the evolution
equations for c, b̂1, b̂2 and this requires the knowledge of the fields u(r), v(r)
also in the necrotic region. A derivation of these quantities is provided in [12],
and it is not reported here for the sake of brevity. In that paper, the same
approach of section 2.4 has been followed to determine the outer boundary
r = B and the necrotic pressure pN .

Once determined the global equilibrium solution for the cord plus the
necrotic region, it is possible to write the evolution equations for c, b̂1, b̂2 in
the necrotic region, which in case (i) take the form

∂c

∂t
−

D

r

∂

∂r
(r

∂c

∂r
)+fv(r)

∂c

∂r
=−fµN

νN

1 − νN

c − 2kaηNcŝ + kdηN b̂1 , (37)
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∂b̂1

∂t
+ u(r)

∂b̂1

∂r
= 2kacŝ − kdb̂1 − k′

aŝb̂1 + 2kdb̂2 , (38)

∂b̂2

∂t
+ u(r)

∂b̂2

∂r
= k′

aŝb̂1 − 2kdb̂2 , (39)

where νN = V c
N/VN is the volume fraction of dead cells and ηN is the ratio of

the cellular surface per unit volume in the necrotic region to the extracellular
volume fraction 1 − νN . In case (ii), the term µNηN (b̂1 + b̂2) must be added
to the r.h.s. of (37).

The conditions at the necrotic interface r=ρN are: the continuity of c; the
continuity of the flux of antibodies which, in view of the mass flux continuity,
and supposing that the factor f is also continuous, takes the form

(1 − νN )
∂c

∂r

∣

∣

∣

∣

r=ρ+

N

= (1 − ν⋆)
∂c

∂r

∣

∣

∣

∣

r=ρ−

N

;

the continuity of b̂1, b̂2. Finally we have no flux at the outer boundary B:

∂c

∂r

∣

∣

∣

∣

r=B

= 0 .

Numerical simulations have been performed for the input data given by:

cb(t) = cb0

(

me−t/τ1 + (1 − m)e−t/τ2

)

,

with values of m, τ1 and τ2 as in [28], and are illustrated in Fig. 5. Figure 5
shows the evolution of free and bound antibody for different values of the
parameters ka = k′

a and kd. As expected, the affinity parameter K = ka/kd

plays an important role: for K =50 (left panel) antibodies are mainly present

in the doubly bound state while, for K =2 (right panel), b̂1 and b̂2 are much
closer to each other. In the simulated cases the concentration of free antibodies
decays very strongly with the radial distance: this is a clinically interesting
information, since it says that the injected antibodies basically do not leave the
cord, thus causing no harm to the surrounding tissue. Moreover, we observe
that the high binding to cell surface antigens results in a ”barrier” to antibody
penetration generating a more heterogeneous antibody distribution due to the
preferential binding in the inner region of the cord. A comparison between the
options (i) and (ii) showed that the fate of antibodies after cell degradation
is not particularly important apart from cases in which both the degradation
rate of dead cells and the binding affinity are large.

4 Conclusions

With reference to an array of tumour cords, taken as a paradigm of a vascular
tumour, we have reviewed some models describing the action of treatments.
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Other parameters given in [12].

Three classes of treatments have been considered: chemotherapy, radiother-
apy, and treatments using antibodies. We have tried to emphasize both the
clinical interest of the results obtained and the limitations accompanying the
corresponding mathematical models, which are necessarily formulated on a se-
lection of the many processes accompanying tumour evolution. We also tried
to provide sufficient motivations for the choices at the basis of the illustrated
approaches. The final goal was to reach conclusions of some practical relevance
by means of numerical simulations in which the various parameters involved
have been taken from the experimental literature.

The theories presented contain some concepts that should always be taken
into account when dealing with tumour cords or spheroids. At the same time
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other aspects have been ignored, like the analysis and influence of stresses
whose role can be important. The reason is on one hand to limit the com-
plexity of the models, which nevertheless is still remarkable, and on the other
the lack of a convincingly complete constitutive law for the cell-liquid mix-
ture. The very same idea of adopting a two-component scheme cannot be
completely satisfactory, although it may be reasonably acceptable for tumour
cords that do not seem to develop a substantial extracellular matrix. Because
of the importance of the subject and the intrinsic complexity of tumours, we
believe that when attempting to formulate a mathematical model, particu-
larly in the critical field of treatments, one should explicitly declare its limits
of applicability.

That said, we can also affirm that the results we have illustrated have
implications of practical interest. This refers in particular to the conclusions
about the effectiveness of splitting the dose in chemotherapy and the different
scenario that is offered when one poses the same question for radiation treat-
ments. The description of how monoclonal antibodies are absorbed in a cord
looks also of practical relevance. Model predictions, although substantially
qualitative, appear sufficiently precise to suggest experimental work aimed at
their confirmation.
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